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Small milling cutters are susceptible to very small changes in geometry on the surface of the cutting edge
that are substantial when machining at the microscale. The purpose of this paper is to show how to design
a neural image processing program to accurately determine the amount of wear accumulated on small
milling cutters after successive machining operations. After determining the amount of wear on a small
milling cutter, the program creates the appropriate amount of compensation to be used for a computer
numerical control (CNC) machining program that will account for in-process tool wear.
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1. Introduction

There have been many methods developed for the estima-
tion of tool wear for conventional machining operations. These
methods include vibration monitoring, acoustic emission moni-
toring, and force feedback systems, which indirectly determine
the approximate tool wear that has accumulated. With these
methods, much research has been put forth to decode and in-
terpret the cutting force signals (Ref 1-4), tool vibrations (Ref
5, 6), sound (Ref 7), and acoustic emission (Ref 8, 9). All of
these methods can be used to estimate the amount of tool wear
during a machining operation. However, they are not of much
use for wear compensation. When a tool wears, the cutting tool
diameter decreases, causing a loss of machining accuracy. It
has been proven by the authors that the most assured way of
knowing how to compensate for the tool wear is to visually
quantify the tool edge after a machining operation and refer-
ence the tool wear to an unworn tool. By referencing the worn
tool to an unworn tool, the change in diameter is directly cal-
culated, through the use of a neural image-processing program
written by the authors. Once the amount of wear is determined,
a text file is created, which is used for a computer numerical
control (CNC) controller to compensate for the change in tool
diameter, thus maintaining the appropriate level of accuracy for
a larger number of parts than would otherwise be possible. In
addition, the program could be used for extending the useful
life of a tool, which contributes to a decrease in manufacturing
costs.

2. Experimental Procedures

2.1 Machining Experiments

The machining experiments consisted of machining tracks
into an A-2 tool steel workpiece. Two sizes of tools were used
for this experiment: 6.350 and 9.525 mm diameter, 4 flute,
uncoated, high-speed steel (M-42) small milling cutters. The
depth of cut for all of the machining tests was 0.508 mm. The
feed rate for the experiments was 2.54 mm/s. Five experiments
were performed for each size of the small milling cutter. The
numbers of machining passes for the 6.350 mm small milling
cutter were as follows: 0, 5, 10, 15, and 18. The spindle speeds
for the 6.350 and 9.525 mm small milling cutters were 760 and
500 rpm, respectively. The 9.525 mm milling cutter machining
experiments were set at 0, 5, 10, 20, and 30 passes.

2.2 Microscopic Imaging of Cutting Tools

Once the machining tests were completed, each of the small
milling cutters was examined using an environmental scanning
electron microscope (ESEM) to determine the corresponding
wear that each small milling cutter had experienced (Fig. 1).
The method used for this experiment was to examine the
amount of abrasive wear resulting in the degradation of the
leading edge of the small milling cutter flute. It was decided
that this would be an appropriate method for categorizing the
degree of wear of each tool. Thus, by extrapolating a line from
the ideal leading edge (the edge from a new, unworn tool), and
the average line of tool wear, the amount of wear can be de-
termined.

2.3 Outline of Neural Image Processing Program

The neural image-processing program consists of four ma-
jor parts: generation of training data for the neural network,
training the neural network, an edge-trace program, and a com-
parison program. Each of these programs was written using
MATLAB v.6.5 software (The MathWorks, Inc., Natick, MA).

2.4 Generation of Training Data and Image Processing

The generation of training data for the neural network was
accomplished by the creation of a white circle on a black back-
ground, as shown in Fig. 2. After the circle is drawn, Gaussian
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noise is added to enable the data to mimic an actual image. The
next step in data generation is to extract a 12 × 12 sub-
image. Once an image is extracted (Fig. 3), it is saved along
with its appropriate target values, which teaches the network
how to extract the next subimage from the large image of a
tool. The target displacement values are the appropriate
amounts to center the dividing line between the white and black
pixels on the subimage. These targets are used to direct the
network for the next subimage extraction. To enable the net-
work to handle data that is not centered in the subimage, the
subimage is shifted along the normal vector, which defines the
rotational degree of the image. An example of a shifted image
is shown in Fig. 4.

After each data set is stored, the rotation vector is incre-
mented by 0.01°. This yields approximately 30,000 data sets to
be used for training and validation for the neural network,
which was thought to be enough data to represent the tool edge
at any orientation. In addition, after each 180° of generation
data, the shade of the white image was decreased, thus gener-
ating gray images on a black background.

3. Neural Network Parameters

Once the training data was generated, it was saved into
a data file for the neural network. The training data was

divided in half, such that one half could be used for validation
of the network to achieve the best generalization. All of the
data was prescaled between –1 and 1 because “tansig” func-
tions were to be used as the network transfer functions. A
feed-forward back-propagation neural network was used to
classify the wear images. It was chosen because it works well
at performing a nonlinear mapping from an image to a vector
output.

The network consists of four layers: a 144 input layer, two
hidden layers, which consisted of 12 neurons in one layer and
two neurons in the second. The output layer is composed of
two “purelin” neurons. The hidden layer transfer functions
used for the network are tansig functions. The equation for the
tansig function is as follows:

X =
2

1 + exp�−2*n� − 1
(Eq 1)

where n is the independent variable, and X is the dependent

Fig. 2 White circle on a black background

Fig. 3 Extracted subimage

Fig. 4 Shifted subimage

Fig. 1 Examination of a 9.525 mm small milling cutter during ma-
chining experiments after (a) zero passes and (b) 30 passes
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variable. The neural net performed exceptionally well when
learning the nonlinear mapping for the images. The net had a
validation stop after it achieved a mean square error of ap-
proximately 0.030 after 150 epochs. Once training had ended,
the net was saved, such that it could be used for the edge-
tracing program.

3.1 Edge-Trace Program

The first part of the edge trace program reads-in a 950 ×
1024 image that was taken from the ESEM. Once the image is
read-in, the starting point of the line is determined. This point
is at the top of the image where the tool edge is defined. Then,
a 12 × 12 image is collected from the large image. This small
image is sent to the network for determining the appropriate
amount to move down and across for the next image. The
change in the horizontal and vertical displacement defines the
line to be drawn on the image. After the line is drawn, a black
and white bitmap image is generated that corresponds to the
line drawn on the real image. This process is repeated until the
lines are drawn to the bottom of the real image. Once the edge
defining line is complete and the black and white image is
finished, the new edge-defining image is saved to a data file for
the comparison program. Because some of the images having

charging effects from the ESEM, which creates unwanted
white areas that interfere with the logic used for the neural
network, a few of the images had to be altered. Figures 5-12
illustrate how the neural network defines the edge of a tool, and
generates a black and white image corresponding to the line
created by the net.

Figure 5 illustrates an image taken from an unworn 6.350
mm small milling cutter; due to the charging effects of the
ESEM, the image had to be slightly modified along the base of
the small milling cutter. Future revisions to the edge-tracing
program will filter the charging effects from the image, creat-
ing an ideal image for the neural network. This image will be
used as a reference for the worn 6.350 mm small milling cut-
ters.

It can be seen from Fig. 6 how the neural net follows the
contour of the worn small milling cutter. There are some slight
discrepancies, which are caused by the built-up edge on the
tool; however, it approximates reasonably well.

Figure 7 illustrates a nearly perfect trace of the cutting edge
of the small milling cutter. The image has a well-defined tran-
sition between the flute edge and the background, thus an ad-
equate representation was achieved.

Fig. 5 Unworn 6.350 mm small milling cutter: ESEM micrograph
and neural network image

Fig. 6 Worn 6.350 mm small milling cutter after 5 machining passes
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Figure 8 illustrates a large amount of wear on the leading
edge. Because the image has a well-defined transition on the
cutting edge, adequate representation was achieved. When a
small milling cutter achieves wear to this magnitude, it is usu-
ally discarded because of its inability to attain sufficient ma-
chining tolerances; however, once the degree of wear is ac-
counted for, the life of the tool may be extended.

Figure 9 is an image taken from an unworn 9.525 mm small
milling cutter. This image is used as a reference for the worn
9.525 mm small milling cutters. The progression of wear of the
9.525 mm milling cutters is shown in Fig. 10-12. Here, the
neural network program tracks the progression of wear as the
small milling cutters machines tracks in A-2 air-hardening tool
steels.

Figure 10 and 11 illustrate how the cutting edge becomes
rounded off, and the built-up edge influences the logic of the
neural network. This is not of utmost concern, as the net-
work was able to generalize the approximate location of the
leading edge. The amount of error is tolerable because the
built-up edge is in approximately the same location as the
leading edge.

Figure 12 demonstrates how the network performed excep-
tionally well, in recognizing the difference between the built-

up edge and the leading edge. Again, a small milling cutter
experiencing wear of this magnitude would dramatically re-
duce the tolerances to be held when machining.

3.2 Comparison Program

The first step to the comparison program is to read-in a tool
reference image (unworn image corresponding to the tool size).
The reference image consists of a black and white bitmap im-
age of an unworn tool that was drawn from the edge-trace
program. The next step is to read-in the black and white image
for the worn tool that is to be examined. Once both of the
images are read-in, the difference between the locations of the
edge of the small milling cutter must be determined. This is
performed by finding the location at the top of the image where
the transition between black and white occurs. The differ-
ence between the reference image and the worn tool image
determines the amount of shift for the worn image. Once the
two images are coincident, the amount of material wear is
determined by subtracting the two matrices that comprise
the two bitmap images. The difference between the two

Fig. 7 Worn 6.350 mm small milling cutter after 10 machining
passes

Fig. 8 Worn 6.350 mm small milling cutter after 15 machining
passes
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bitmap images is displayed to the screen for the user to analyze.
Once the worn material data is stored, it is then used to calcu-
late the actual material worn. The appropriate amount of wear
is then output to the screen as the average and the maximum
amount of wear imparted to the worn tool. Figures 13-18 il-
lustrate how the comparison program uses the bitmap images
created using the neural network to determine the amount of
wear.

4. Experimental Results

Figures 13 and 14 illustrate the successive wear that
occurs during machining operations. The wear profile remains
relatively the same shape as the initial leading edge. However,
the cutting diameter is reduced. Once the wear has been ac-
counted for, an appropriate amount of compensation may be
used.

Figure 15 illustrates a large amount of wear experienced by
the small milling cutter. The maximum amount of wear on this
small milling cutter was 0.09 mm, which corresponds to a loss
of approximately 0.178 mm on the diameter. This would result
in a machined part that would not meet any but the loosest of

tolerances. Again, this wear is accounted for, thus the toler-
ances of the part could still be met.

Figure 16 illustrates an insignificant degree of wear, thus the
CNC machine would not require any compensation.

Figures 17 and 18 illustrate the successive wear that occurs
on a small milling cutter. The amount of wear for the tools at
this stage would be detrimental to the required workpiece tol-
erances; however, because the wear is known, the appropriate
compensation can be used.

5. Conclusions

The results of the program are very promising in that the
program accurately calculates the amount of wear of a tool. In
addition, because the program was written for a very general
case, it may be useful for a variety of manufacturing opera-

Fig. 9 Unworn 9.525 mm small milling cutter

Fig. 10 Worn 9.525 mm small milling cutter after 5 machining
passes
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Fig. 12 Worn 9.525 mm small milling cutter after 30 machining
passes

Fig. 13 Worn 6.350 mm small milling cutter after 5 machining
passes. Average wear, 1.5 × 10−2 mm; maximum wear, 2.54 × 10−2

mm

Fig. 14 Worn 6.350 mm small milling cutter after 10 machining
passes. Average wear, 2.45 × 10−2 mm; maximum wear, 4.83 × 10−2 mm

Fig. 15 Worn 6.350 mm small milling cutter after 15 machining
passes. Average wear, 3.30 × 10−2 mm; maximum wear, 9.14 × 10−2 mm

Fig. 11 Worn 9.525 mm small milling cutter after 10 machining
passes
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tions, where the wear is defined by a change in geometry. Thus
the program could be used to accurately output an appropriate
amount of compensation for any change in geometry, whether
it is a displacement, change in voltage/current, etc. The next
step to this project is to interface the program directly with a

digital camera, so that it can be directly linked to a machine
that could benefit from real-time wear compensation.
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Fig. 16 Worn 9.525 mm small milling cutter after 5 machining
passes. Average wear, 0.50 × 10−2 mm; maximum wear, 1.39 × 10−2

mm

Fig. 17 Worn 9.525 mm small milling cutter after 10 machining
passes. Average wear, 0.52 × 10−2 mm; maximum wear, 3.56 × 10−2 mm

Fig. 18 Worn 9.525 mm small milling cutter after 30 machining
passes. Average wear, 3.30 × 10−2 mm; maximum wear, 6.10 × 10−2

mm
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